A comparison of two approaches for solving unconstrained influence diagrams
نویسندگان
چکیده
Influence diagrams and decision trees represent the two most common frameworks for specifying and solving decision problems. As modeling languages, both of these frameworks require that the decision analyst specifies all possible sequences of observations and decisions (in influence diagrams, this requirement corresponds to the constraint that the decisions should be temporarily linearly ordered). Recently the unconstrained influence diagram was proposed to address this drawback. In this framework, we may have a partial ordering of the decisions, and a solution to the decision problem therefore consists not only of a decision policy for the various decisions, but also of a conditional specification of what to do next. Relative to the complexity of solving an influence diagram, finding a solution to an unconstrained influence diagram may be computationally very demanding w.r.t. both time and space. Hence, there is a need for efficient algorithms that can deal with (and take advantage of) the idiosyncrasies of the language. In this paper we propose two such solution algorithms. One resembles the variable elimination technique from influence diagrams, whereas the other is based on conditioning and supports any-space inference. Finally we present an empirical comparison of the proposed methods.
منابع مشابه
Solving the Unconstrained Optimization Problems Using the Combination of Nonmonotone Trust Region Algorithm and Filter Technique
In this paper, we propose a new nonmonotone adaptive trust region method for solving unconstrained optimization problems that is equipped with the filter technique. In the proposed method, the various nonmonotone technique is used. Using this technique, the algorithm can advantage from nonmonotone properties and it can increase the rate of solving the problems. Also, the filter that is used in...
متن کاملA Free Line Search Steepest Descent Method for Solving Unconstrained Optimization Problems
In this paper, we solve unconstrained optimization problem using a free line search steepest descent method. First, we propose a double parameter scaled quasi Newton formula for calculating an approximation of the Hessian matrix. The approximation obtained from this formula is a positive definite matrix that is satisfied in the standard secant relation. We also show that the largest eigen value...
متن کاملAn efficient improvement of the Newton method for solving nonconvex optimization problems
Newton method is one of the most famous numerical methods among the line search methods to minimize functions. It is well known that the search direction and step length play important roles in this class of methods to solve optimization problems. In this investigation, a new modification of the Newton method to solve unconstrained optimization problems is presented. The significant ...
متن کاملA limited memory adaptive trust-region approach for large-scale unconstrained optimization
This study concerns with a trust-region-based method for solving unconstrained optimization problems. The approach takes the advantages of the compact limited memory BFGS updating formula together with an appropriate adaptive radius strategy. In our approach, the adaptive technique leads us to decrease the number of subproblems solving, while utilizing the structure of limited memory quasi-Newt...
متن کاملComparison between Combined and Separate Approaches for Solving a Location-Routing Problem in Hazardous Materials Transportation
In the case of hazardous materials management, selected routes for carrying hazardous materials (i.e., hazmat) have significant effects on locating hazmat distribution centers. Since, risk and cost are usually considered as two main attributes to determine the best routes, optimized locations are sequentially outlined depending on selected routes. In the present paper, t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Int. J. Approx. Reasoning
دوره 50 شماره
صفحات -
تاریخ انتشار 2009